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In the applied statistical literature, causal relations are often described equivocally or euphemistically

as ‘risk factors’, or as part of ‘dimension reduction’. The statistical literature also tends to speak of

‘statistical models’ rather than of causal explanations, and to say that parameters of a model are

‘interpretable’, often means that the parameters make sense as measures of causal in�uence. These

ellipses are due in part to the use of statistical formalisms for which a causal interpretation is wanted

but unavailable or unfamiliar, and in part to a philosophical distrust of attributions of causation

outside experimental contexts, misgivings traceable to the disciplinary institutionalization of claims

of in�uential statisticians, notably Karl Pearson and Ronald Fisher. More candid treatments of causal

relations have recently emerged in the theoretical statistical literature.

1. Introduction

In the applied statistical literature, causal relations are often described equivocally or euphemistically as

‘risk factors’, or as part of ‘dimension reduction’. The statistical literature also tends to speak of ‘statistical

models’ rather than of causal explanations, and to say that parameters of a model are ‘interpretable’, often

means that the parameters make sense as measures of causal in�uence. These ellipses are due in part to the

use of statistical formalisms for which a causal interpretation is wanted but unavailable or unfamiliar, and

in part to a philosophical distrust of attributions of causation outside experimental contexts, misgivings

traceable to the disciplinary institutionalization of claims of in�uential statisticians, notably Karl Pearson

and Ronald Fisher. More candid treatments of causal relations have recently emerged in the theoretical

statistical literature.
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2. Causal Interpretations of Statistical Modelsp. 499

In statistics, di�erences in the family of probability distributions considered are almost always

accompanied by a new ‘model’ terminology, with the result that similarities and dissimilarities relevant to

causal inference and prediction are sometimes obscured. Some of the most common frameworks include:

1. ANOVA models. Analysis of Variance is one of the most widely used methods for estimating the e�ect

of one or more categorical variables on a continuous variable. A unit uij belongs to some group j

having the same value for the potential cause, X, and the value of Y for uij is Y  ij. The model is

where μ is the average value across all values of X, αj is the mean of the group with the jth value of X,

and ►ij is the value of a Normally distributed random variable, with the same distribution for all units.

The intuitive causal interpretation, where appropriate (which is not always), is that moving units

from one group to group j, or intervening to give new units the jth value of X, would on average result

in values of Y characterized by αj.

2. Recursive, linear structural equation models. Variables are ordered and each is written as a linear

function of a subset of its non‐descendants in the ordering plus ‘noise’. Noises may be independently

distributed or correlated. Variations include treating values of linear coe�cients as random variables,

and the use of binary variables as sources (exogenous variables). Some variables may be unrecorded or

‘latent’. The causal interpretation is that the equations (with �xed coe�cients) specify the change

that would occur in the dependent variable Y for a forced, exogenous unit change in any independent

variable X occurring in the equation for Y, if other variables (including the noise variable for Y) were

held constant by intervention. With random coe�cients estimated by their means, the equations give

the average change in Y for a unit forced, exogenous change in X (with similar constraints on other

variables except the noise term). This class of statistical models includes as special cases factor

analysis models, linear regression models, and principal components models.

3. Non‐recursive linear structural equation models do not require an ordering of variables: X may occur in

an equation for Y, and Y may reciprocally occur in an equation for X, and more generally a chain of

equations may occur constituting (in graphical terms) a closed path from X to X. One causal

interpretation is that each variable X corresponds to a time series X  t and if an equation such as Y = a X

+ ► occurs, then Y  t = a X  t + ►t in the time series, with the ► variables all independently distributed.

An intervention on X then �xes (or randomizes) X  t at some arbitrary time t0, and the e�ect on

other variables is determined by the time series—results di�er if X is held �xed throughout the

resulting series, or merely ‘shocked’ at one time. Algorithms for computing the equilibrium e�ects

using linear cyclic graphical models were developed in the engineering literature.

4. Logistic regression models. Suppose Y is a binary variable (say with values 0 and 1) and X a continuous

variable. The odds that Y = 1 are Pr(Y = 1) / 1 – Pr(Y = 1) and the log odds or logit is the logarithm of that

ratio. In logistic regression models, the logit of Y is set equal to a linear function of X plus noise, that

is:

(1)

= μ+ +Yij αj εij

p. 500
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Versions of logistic regression are among the most widely used statistical models, especially in

epidemiological contexts where causation is at issue; the model suggests that an intervention that

changes X will change the di�erence (or the ratio) in the logs of the probabilities of the two values of Y.

5.General Additive Models allow for dependent variable Y to be any smooth additive function of other

variables plus noise, e.g. Y = a ln(X   ) + b e  + ►. Their causal interpretation is generally

straightforward.

5. Polynomial Regression Models allow Y to depend on any polynomial function of other variables, plus

noise. Again, the interpretation as causal models is straightforward.

6. Time series models. Consider an indexed set of vectors V  t with t ranging over the integers or the

positive integers, and let there be a joint probability distribution that is stationary—the marginal

distribution is the same for all times t. For such systems, and more speci�cally for linear systems in

which the co‐variances do not change with time, Granger (1969) proposed that the series X  t is a cause

(now called a Granger cause) of the series Y  t with respect to the remaining variables provided the

expected value of Y  t conditional on V  t \ {Y  t−,X  t−} is not equal to the expected value of Y  t
conditional on V  t \ Y  t−, where Y  t‐ and X  t− are all variables for Y and for X, respectively with indices

smaller than t. The idea is a generalization of linear regression and related to Suppes (1970) more

general proposal for understanding causal relations as conditional probability relations subject to a

time constraint.

Granger causation need not be causation if, for example, the di�erence in expected values is due to

unrecorded common causes.

7. Categorical variables (Bishop, Fienberg, and Holland 1975) were the subject of various attempts over

many years to provide a family of probability distributions and representations that could be

estimated and could be naturally interpreted as specifying causal relations. One in�uential proposal is

the log linear model, which speci�es, not the dependence of variables on one another, but the joint

probability of an assignment of values to categorical variables. With a system of variables of n × m

values and a joint probability distribution one can associate an n × m table, with each cell of the table

representing the probability that a case exhibits the combination of values in that cell. The log

linear model treats the natural log of the cell probability as a linear function of an undetermined

parameter raised to the power of each variable and each conjunction of variables. For example, for two

binary variables, A, B, the natural log of the probability of a case lying in cell ij is ln(f  ij) = λi    + λj    +

λij   . The parameter estimation problem is to determine the values of the λ variables. The log linear

model has been given a causal interpretation for certain spatial statistics (Moore 2001) but has no

evident general causal interpretation, although attempts have been made to give it one (Goodman

1978).

(2)

log(pr(Y=1)/pr(Y=0)) = aX+ ε

2 cz

p. 501

A B

AB

In its most general form, the causal Bayes net model for categorical variables assumes a multinomial

distribution of the variables, and a directed acyclic graph of causal relations. The parameters of the

distribution are simply the probabilities of each value of each variable conditional on each assignment of

values to its parents—its direct causes—in the graph. Such models have the causal interpretations

described in more detail below. More specialized parametric families of probability distributions for causal

Bayes nets have also been used. For binary variables, a consistent parameterization (Pearl 1988; C. Glymour
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2003) is obtained by treating each variable as a Boolean function of its parent variables, with each parent

variable multiplied by a Boolean parameter, and taking probabilities of both sides.

3. Parameter Estimation

While in principle every method of searching for causal explanations based on sample data might be

structured as a form of parameter estimation, the most common view of causal inference in statistics is that

it involves estimating unknown values of numerical parameters that measure the strengths of potential

causal relations that are themselves speci�ed a‐statistically—from prior theory or from experimental

design. In the simple ‘model’

(3)

crop yield/acre = α tons of  fertilizer/acre+β tons of  water applied/acre+χ+ ε

the aim is to estimate the unspeci�ed values of α, β, and χ under various assumptions, for example that εɛ is a

normally distributed random variable and that values of α, β, and χ are the same for all cases (‘�xed e�ects’)

or vary from case to case (‘random e�ects’), etc. An estimator is simply a statistic: that is, a function from

sample properties to some de�nite range of mathematical objects, in the present case to the real numbers

that are the possible parameter values. In the simplest cases, estimates of the parameter values and

assumptions made about the joint distributions of variables—in our example, εɛ, tons of fertilizer/acre and

tons of water applied/acre—determine a sampling distribution for a statistic—that is, for any given

sample size, the probability distribution of values of the statistic among samples of that size. The oldest

statistic of this kind is Legendre's least squares.

p. 502

A large body of statistical results concerns which estimators meet various intuitively motivated criteria that

can be assessed without knowledge of the true value of the parameter (Lehmann 1998). One criterion is

‘consistency’, which means, roughly, convergence of estimates to the true value of the quantity estimated.

There are importantly di�erent exact de�nitions. In all de�nitions below, α is a parameter or vector of

parameters, a is its actual value, and 㵪(α, N) denotes the value of the estimation function ω for α applied to a

sample of size N and ϖ㵪(α, d) the estimate of α from d, the true probability density, and Pr is a probability

based on d.

(1) Fisher Consistency: Given the (true) density d for the observed variables, when the value of

parameter α is a, 㵪(α, d) = a.

(2) Pointwise Consistency:

(3) Uniform Consistency:

∀δ > 0,∀ε > 0,∀ a,∃ n ∀ N > n, [pr(|㵫(α,N) − a| > δ) < ε]

∀δ > 0,  ∀ε > 0,  ∃  n ∀ N > n,∀ a [pr(|㵫(α,N) − a <ߋ δ) < ε] .

All these consistency criteria have ‘weak’ versions that allow the estimator to be a partial function—that is,

on some data the estimator can pass, and can continue to pass no matter how large the sample size, but

D
ow

nloaded from
 https://academ

ic.oup.com
/edited-volum

e/42621/chapter/357701929 by King's C
ollege London user on 23 Septem

ber 2022



must eventually provide an estimate as the sample size increases without bound. Analogous criteria apply as

well to hypothesis testing and to procedures that search for graphical causal models, discussed below.

Uniform Consistency, but not Pointwise or Fisher Consistency, entails that con�dence intervals for the

estimates can be constructed that converge to zero width as the sample size increases without bound. For

some statisticians, no estimation procedure is acceptable unless it satis�es Uniform Consistency, a

requirement that sometimes excludes all possible estimators.

None of these consistency criteria su�ce to distinguish among many possible estimators, and other

desiderata are therefore imposed where they can be. For example, the mean squared error of estimates can

be divided into a term representing the expected absolute value of the di�erence between the true value and

the estimated values—the square of the bias—and a term representing the variance of the estimates (the

variance of the estimates, that is, that would be obtained on samples of the given size obtained from the true

distribution.) A common requirement is that an estimator be unbiased and among unbiased estimators,

have the minimum variance. A popular alternative, Fisher (1990), is maximum likelihood: that the

estimated value be that for which, among the alternative possible values, the observed sample is the most

probable. An enormous literature studies the applicability and interconnections of these and related criteria.

p. 503

An increasingly popular alternative is Bayesian estimation of parameters, which, starting with a probability

distribution over the values of the parameters, computes a probability distribution conditional on the

observed sample (Lee 2004). Bayesian estimation, long merely a toy because of the di�culty of actually

computing posterior distributions, has been made practical by simulation methods that allow such

estimates for small samples (Casella and George 1992) and by an easily computed asymptotic formula, the

Bayes Information Criterion (Schwarz 1978) that in many cases provides good approximations to the

posterior probability for large samples. Disputes over the various consistency criteria above are of little

relevance to Bayesians, who have weaker requirements, for example, that the set of values of the parameter

for which the posterior probability converges, in the pointwise sense above, has probability 1, or that the

expected error converges to 0.

Parameter estimation has an underdetermination problem. Identi�ability fails when more than one

assignment of parameter values determines the same marginal probability distribution over observed

variables. Identi�ability typically fails for parameters relating variables that are confounded, that is, jointly

in�uenced by one or more common unobserved variables. When X is thought to be a confounded cause of Y,

a standard solution is to �nd a instrumental variable Z that is thought to in�uence Y if at all, only through X;

in some distributions this permits consistent estimation of the in�uence of X on Y, for example, of α in

equation (3). The instrumental variables technique works only for special forms of dependency and

probability distributions; while it holds for systems of binary variables parameterized as ‘noisy or gates’

(e.g. Pr(Y) = Pr(a X ⊕ b Z), where Y, X, Z, a, and b are Boolean and ⊕ is Boolean addition) (Glymour 2003), it

fails, for example, for categorical variables distributed according to a multinomial distribution, although

bounds on probabilities may be estimated (Galles and Pearl 1995).

Statistical literature and practice contain various other ad hoc or heuristic rules for avoiding confounding,

in particular advice to condition on any variable found to be associated with both of two variables thought to

be causally related, and to stop conditioning on new variables when the association under study does not

change much. While widely used, this recommendation is not generally sound and can result in increased

error compared to estimates with a smaller or larger set of co‐variates.

Finally, some distributions and their parameters are regarded as ‘not causal’ for good reason. For example,

in a linear system with normally distributed variables, the variables may be transformed, or ‘standardized’,

by setting, for all variables X, X  s = (X – μX) / σX, where μX is the mean of X in the sample and σX is the sample

standard deviation. The result is that linear coe�cients become correlation coe�cients, but do notp. 504
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predict the e�ect of an intervention that produces a unit change in a causal variable in any other sample

governed by the same causal process but with di�erent noise variances.

4. Hypothesis Testing

Parameter estimation is often an implicit step within testing a causal hypothesis expressed by an equation,

such as (1), assuming a family of probability distributions characterized by values of the parameters in the

equation. For example, from a maximum likelihood estimate of parameter values a sampling distribution of

some statistic is obtained and the probability that the value of the statistic lies in some tail or tails of the

distribution is computed, ideally in conjunction with the probability of the same tail membership of the

statistic as a function of alternative values of the parameters—essentially, the power function of the test.

Depending on the school of statistics, the use of the test is to reject the hypothesis, or not (Neyman–

Pearson), or to regard the hypothesis as con�rmed, or not (Fisher). There are as many tests of a model as

there are relevant statistics, and a statistical standard is to search for ‘uniformly most powerful’ tests and

recommend their use when they exist.

Philosophical commentators (Mayo1996) have emphasized that reliable inquiry requires some further

criterion of severity of a test, or body of tests, in excluding alternatives, where the severity of a test of a

hypothesis is, roughly, a function of the probability that the test would result in a worse �t to the sample

data were the hypothesis false; Mayo proposes that experiment with hypothesis testing be extended to all of

the assumptions of a ‘model’ such as (3), and to the sampling procedure, with the hope that unique

explanatory features will eventually be identi�ed. Assumptions about the distribution family may be tested,

as may assumptions that the probability distribution for values of variables are the same for all sample

units, and independent for each sample unit (i.i.d. sampling), and so on. A careful formulation of severity

criteria and a more detailed discussion of foundational issues in hypothesis testing may be found in Mayo

(1996). This perspective is illustrated vividly in work by Spanos (2007), who develops a heuristic search

procedure based on a series of hypothesis tests for �nding the appropriate family of probability

distributions, and for detecting and correcting for statistical dependencies between units in a sample

(usually called, rather misleadingly, autocorrelation).

5. Estimating Interventions and Graphical Modelsp. 505

The graphical causal model framework exploits directed graph representations, representations that have a

long history, reviewed in Pearl (2000). Variables are represented as nodes in a directed graph, and a directed

edge, X → Y, is the claim that X is a direct (relative to other variables represented in the graph) cause of Y.

The diagrams are useful as a psychological aid, but so far as estimation is concerned, the key tools are

consequences of ‘factorizations’ of the joint probability density on values of a set of variables. In graphs

without cycles—paths of directed edges with the same orientation that begin and end with the same

variable—the factorization is implied by the Markov assumption: each variable X, in a directed graph is

independent in probability of variables in the graph that are not direct or indirect e�ects of X, conditional on

the direct causes of X in the graph. Formulations of the Markov assumption (Kiiveri and Speed 1982) for

causal systems emerged from studies in the late 1970s of factorizations of distributions. Let V be a set of

variables Vi, the vertex set for a directed acyclic graph (DAG) G, and for each variable Vi in V, let Par(Vi) be

the set of variables with edges in G directed into Vi. Let Pr be a probability distribution or density satisfying

the Markov assumption for G. Then for all sets v consisting of one value, vi, for each variable V  i in V,
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(4)

Pr(V = ν)) =  Pr(V i = ߋ par( ))Πi vi Vi

The Markov factorization is a necessary consequence of either of the following:

a. the value of each variable is determined by the values of its parents and zero indegree variables are

jointly independent;

b. the joint probability distribution is the marginal of a probability distribution satisfying the Markov

assumption for a directed graph without cycles, zero indegree variables are jointly independent; and

some (possibly empty) set of variables, each of which has a single direct e�ect in the graph and is the

e�ect of no variable in the graph, is marginalized out.

The causal graphical framework aims (1) to enable the estimation of the probability of any represented

variable conditional on values of any other variables represented; (2) to enable the estimation of the

probability of any represented variable conditional on any hypothetical intervention that forces new

probability distributions on other variables. Our concern here is with the second, causal, aim. The

probabilities of variables in a graphical model can be interpreted either as actual or hypothetical population

frequencies, or as propensities or chances attached to individuals, propensities that may di�er from the

value a variable actually has for the individual.

p. 506 Pearl, Geiger, and Verma (Pearl 1988) and Lauritzen and his collaborators (Lauritzen 1996), provided

algorithms that decide whether the Markov assumption applied to a directed acyclic graph implies any

particular conditional independence relation. Pearl's version has been more popular: V1 and V  2 are d‐

connected conditional on set Z if and only if there is a sequence of edges between V1 and V  2 such that every

vertex touched by the sequence and having two of the sequence edges directed into it (every collider on the

sequence) is in Z or is the source of a directed path leading to a member of Z, and no other vertex touched by

the sequence is in Z. Vertices are d‐separated with respect to Z if they have no d‐connecting path with respect

to Z. The Markov assumption applied to a directed acyclic graph implies that in every distribution satisfying

the assumption for the graph, two vertices are independent conditional on a set of other variables if the

vertices are d‐separated conditional on the set. Many of the notions that are otherwise explained in terms of

correlations of various kinds, or their absence, are explicable in terms of d‐connection. For example Z is an

instrument for the e�ect of X on Y provided (i) Z, X, and Y are not pairwise independent; (ii) there is no edge

from X to Z; and (iii) every edge sequence that unconditionally d‐connects Z and Y touches X. The d‐

separation relation also characterizes independence and conditional independence relations in systems in

which the noise terms for some variables are speci�ed to be correlated, without causal explanation, and it

also necessarily characterizes those relations implied (for all non‐zero values of linear coe�cients) by linear

systems represented as cyclic graphs under the two circumstances listed above as su�cient for the Markov

condition.

Given an acyclic causal graph G = <V, E>, V a set of random variables and E a set of directed edges, and a

probability distribution Pr, Markov for the graph, an intervention on V in V can be represented by an

extension of G with a new variable IV with at least two values and an edge directed into V and no edges into or

out of IV, and a probability distribution Pr*, Markov for the extended graph, such that Pr* conditional on

one value i of IV is equal to Pr, and conditional on at least one other value j of IV is equal to Pr with a new

factor Pr*(V) substituted for the original Pr(V) in the factorization. In general, if the factorization of V

depends on Par(V), in the new distribution the factorization of V depends on Par(V) ∪ IV The representation

allows the computation, given the probability of V conditional on IV = j, of the probability of any other

variables produced by an intervention (Spirtes et al. 2001). For the special case of interventions that ‘break’
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edges into V—i.e. that in the factorization of the original graph remove the dependence of V on other

variables, Pearl (2000) provides an algorithm for the computation when the causal structure is known but

may contain latent variables, extending an algorithm of Spirtes et al. (2001). Either procedure can be applied

when causal and probabilistic input is incomplete, and Spirtes's form can do so even when the intervention

alters, but does not remove, the conditional probability of V on Par(V). Spirtes's algorithm can give ‘not

computable’ as an outcome, and it is known that the procedure is not maximally informative, but Pearl's

has been shown to be. Woodward (2003) has argued that the edge‐breaking sense of intervention is

fundamental to the notion of causation. The Markov condition and associated algorithms yield results about

estimation of intervention e�ects that hold for every probability distribution Markov for any DAG. Further

prediction results may hold for particular families of probability distributions; the consequences of

restrictive distribution assumptions are not very well explored.

p. 507

6. The Counterfactual Framework

A more in�uential framework in contemporary statistics (Rubin 1977; Robins 1986) analyses causal

dependency as a counterfactual relation, roughly in the sense of Lewis (1973), although philosophical

logicians seem not to have been read by the statistical community. The goal of inference is taken to be the

e�ect of treatment assignment T = t on outcome O for unit u, de�ned to be the di�erence between the actual

value of the outcome for u and the outcome u would have had under an alternative treatment assignment, T

= t′. ‘Treatment assignment’ is sometimes a misnomer, since the counterfactual framework is meant to be

applied to non‐experimental data as well as to experimental, and merely means whichever variable of a pair

is considered to be the potential cause. (‘Treatment assignment’ is distinguished from ‘Treatment’ in the

epidemiological literature because patients do not always do as told.)

Since the alternative treatment is not given, the outcome that would have obtained had an individual been

given an alternative treatment is not observed. The distinguishing idea of the counterfactual framework is

to introduce for each outcome variable and each alternative treatment assignment a ‘counterfactual

variable’ whose value is, for each individual in the sample, the value the outcome would have had for that

individual if the alternative ‘treatment’ had been given. Contrasts between the outcome on one treatment

assignment and on another treatment assignment then become a problem in estimating models with

unobserved, counterfactual variables. This kind of estimation problem has no unique answer for the

individual case. Estimation of average in�uences requires assumptions about the uniformity of

dependencies across individuals (or the random distribution of dependencies independently of the variable

values) and the absence of confounding variables in�uencing the putative cause and the putative e�ect.

Statisticians using the framework tend to report ‘propensity scores’ showing how the contrast depends on

the values of parameters in the model representing counterfactual dependencies and confounding

in�uences.

p. 508 Models developed within the counterfactual framework implicitly use the Markov assumption, which

suggests these models have graphical model equivalents that eschew counterfactual variables, as various

authors have (e.g. Pearl 2000) have argued. There are di�erences. The counterfactual framework does not

allow counterfactual variables that range over values the treatment assignment (or other upstream variable)

would have had were the e�ects to have been di�erent. Thus, unlike the graphical causal model framework,

in order to specify the relevant model variables the counterfactual framework requires prior assumptions as

to which variables are potential causes of which others. For this and other reasons, work in the

counterfactual framework avoids automated search procedures.
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7. Search for Causal Explanations

Experimental settings in which one or more variables are manipulated by the experimenter provide

restrictions on plausible causal hypotheses. If the value of X in each case is determined by the experimenter,

then values of X and of potential e�ects, Y, of X are not confounded by common causes, and Y is not an e�ect

of X. The inquiry is reduced to estimating whether X has any e�ect on Y, and, if so, some measure of the

strength of that e�ect. Early in the twentieth century, Fisher (1990) made popular designs that randomize

the values assigned to variables under experimental control, both avoiding confounding and allowing

statistical tests of the hypothesis of no e�ect, and estimates (as by ANOVA or regression) of the strengths of

in�uences. Fisher also introduced strategies for making statistical inference more e�cient—both in an

informal and in a technical sense—by various sampling and control methods. For example, in estimating

which of two kinds of shoes wear longest on boys, simple randomization would assign a pair of shoes of one

or another kind at random to a representative sample of boys. But, on average, boys might wear out shoes

on their right feet more quickly than on their left, and boys vary in how rapidly they wear out shoes.

Estimates of the di�erence would be improved by randomly assigning, for each boy, one shoe of one type to

one of the feet of a boy, and the other type to the other foot of the same boy and estimating the average

across all boys of the individual di�erences in wear. Recent work in the graphical causal model tradition has

shown that when the aim is to determine all causal relations among a set of variables, strategies that

simultaneously and independently randomize multiple variables reduce exponentially the number of

experiments required. Related results also suggest improved estimation of causal e�ects through such

strategies (Eberhardt, Glymour, and Scheines, 2005).

p. 509 Some Bayesian statisticians dispute the necessity of randomization, and the appropriateness of relying on

randomization to remove confounding. A random sample may, by chance, be very unrepresentative of the

population from which it is sampled.

Even with experimental manipulation, causal inference can be di�cult. The treatment and its e�ects may,

for example, cause some units in an experiment to drop out or not comply with the experimental design

(e.g. cells die, mice die, people stop taking their drugs, people drop out of a long‐term experiment), resulting

in an unrepresentative (‘biased’) sample. Experiments may seek simultaneously to estimate the e�ects of a

variable on multiple outcomes, but the several outcome variables may in�uence one another, or there may

be unmeasured confounding variables that in�uence the outcomes and are not removed by the

randomization—because the outcome variables are not randomized. In these respects, causal inference from

experiments shares problems with causal inference without experimental controls.

Without experimental controls, search for causal relations from samples may be viewed essentially as a kind

of estimation problem in which hypothesis testing may (or, as in Bayesian procedures, may not) be a tool or

step. Causal estimation may be done in steps, �rst estimating the graphical causal structure and possibly the

functional form of dependencies, then estimating parameters, or the functional form may be separately

estimated (or assumed) and the estimation of parameters and graphical structure estimated

simultaneously. The estimated causal structures are themselves hypotheses that can in most cases be

subjected to statistical tests. The mathematical questions are of the same kind as in conventional statistical

estimation: under what assumptions do which kinds of search procedures (i.e. estimators) have which kind

of desirable statistical and computational properties connected with (probably) �nding the truth?

Despite the parity of reasoning between estimation and search, a long and in�uential tradition in statistics

has deprecated model search as ‘�shing expeditions’ or ‘ransacking’. One intelligible thought behind the

slogans was that using data to develop and test a statistical model would lead to ‘over�tting’, meaning that

estimates of parameter values obtained from the data also used to obtain the model would in general not

agree with estimates of the same parameters obtained from new data drawn from the same probability
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distribution (because the model obtained would sometimes be wrong, typically containing too many

parameters). Statistical writers distinguished ‘con�rmatory’ statistical analyses, usually meaning those

that issued in a well‐de�ned test of the hypothesis on data not ‘used’ in formulating the hypothesis, and

those analyses resulting from data‐driven search that had no such test. Bayesian statisticians have been

especially concerned about ‘double counting’, that is, using the same datum in forming a prior probability

distribution and in calculating a posterior distribution. These objections are now often addressed in practice

by holding out a sample of data for testing, or by repeating model search and parameter estimation with

subsets of the original data and testing the model and estimates on the remainder of the original data

(usually called cross‐validation). Further, it was for a long time quite unclear what mathematical objects

could represent causal relations, and without such objects model search could not be treated

mathematically as estimation. The graphical representation of causal relations and formalization of the

Markov condition have largely, but not entirely, resolved that problem. One could reasonably doubt that

automated procedures could be devised that would substitute for knowledge of a domain and human

consideration of the data. For example, the fact that test scores of students on an examination can be put in

a series in which there are improbable sequences of similar scores would suggest nothing to a computer, but

to a human, knowing that the series order is the seating order, it is evidence of cheating. The doubt is well‐

founded, but that does not mean that systematic, automated search procedures cannot help in discovery.

p. 510

From early in the twentieth century, statisticians recognized that in many problems the number of potential

alternative causal explanations for a body of data is in�nite, or at least too large to survey explicitly, and

that the fact that a particular model is not rejected by a test provides no guarantee that a particular

alternative model is the true one, or at least relevantly closer to the truth. Further, the implicit statistical

criterion of success involved succeeding—converging to the truth—regardless of what the truth might be,

without sometimes having to say ‘don't know’. This meant that causal parameters could never be pointwise

estimated unless the graphical structure and parametric family were already known, and it was far from

clear how such knowledge could be acquired systematically and reliably. There are a great many hazards to

correct causal inference from non‐experimental data, for example: (1) missing values of variables for cases;

(2) unmeasured confounding variables; (3) measurement errors; (4) sample selection bias; (5)

autocorrelation, in which values of variables for a sample unit in�uence values of variables in other sample

units; (6) probability distributions and functional dependencies that are not among the familiar examples;

(7) samples that are formed of sub‐populations with distinct probability distributions and even distinct

qualitative causal relations; (8) the data may be described best by a cyclic graph, and for reasons noted

above, the causal content of such models is ambiguous and their discovery from data alone seemed

implausible; (9) sometimes the causal relations of interest are among variables that are not measured, but

whose e�ects or manifestations are measured, and it seemed implausible—some claimed impossible

(Bartholomew and Knott 1999)—that data‐driven methods could provide the information required.

The development of the formalism of graphical causal models prompted a burst of research beginning

around 1990 on computerized search methods for which proofs of convergence to correct information could

be provided. The Markov assumption alone is insu�cient for the existence of any consistent estimators of 

causal relations, and further assumptions are needed to form a subspace of possible models for which

search is possible. One widely used assumption is Faithfulness: all conditional independence relations in the

distribution are implied by the Markov assumption applied to a DAG. Faithfulness was later shown to hold

probability 1 for DAGs with smooth measures on the parameters of linear models or the parameters of

categorical variable models (Spirtes et al. 2001). Markov, Faithfulness, and samples that are independently

and identically distributed have been proved to be su�cient for pointwise consistent inference to features of

causal graphs in a variety of circumstances: (a) for acyclic causal structures, when there are no unrecorded

confounding variables or ‘correlated errors’; (b) for linear, cyclic causal structures when there are no

unrecorded confounding variables or correlated errors; (c) for acyclic causal structures when there are

unrecorded, and unknown (before data analysis), confounding variables or correlated errors; (d) for

p. 511
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identifying sets of measured variables that share a single unmeasured common cause; and (e) for

estimating features of the causal relations among the latent variables identi�ed as in (d). The same

algorithm that su�ces for (c) is also pointwise consistent when there is sample selection bias. These

procedures do not typically identify a unique directed graph of causal relations, but rather features (e.g. a

directed edge, or a directed path, etc.) common to all members of a set of alternative graphs that might

explain the data. More recent work has shown that unique DAGs for linearly related, non‐normally

distributed systems without latent variables can be consistently identi�ed from i.i.d. data provided

measured variables are not deterministic functions of one another. (Shimizu et al. 2006). Faithfulness is not

required—e�ects due to di�erent causal pathways can perfectly cancel and the causal structure can

nonetheless be fully recovered. These methods have been combined with procedures for identifying latent

variables to estimate a unique DAG among unrecorded common causes.

Linear autoregressive time series can be given the form yn = xn + Σj aj yn–j where j ranges over some

speci�ed number of previous time steps, the aj are real constants, and xn is a ‘random shock’ at time step n.

In the multivariate version each variable may depend on a linear combination of time delays of other

variables. Moving average time series make yn a linear function of past random shocks plus a current shock.

When both sorts of dependencies are present, the system is called an autoregressive moving average, or

ARMA model. Time series models have an autocorrelation between any two variables for any speci�ed time

di�erence, or lag—the correlation of yn with xn–j for some �xed j. Partial autocorrelation for a given time

di�erence is autocorrelation conditional on values of the variables between the lags.

A standard search procedure for time series is owed to Box and Jenkins (1970). An empirical series is tested,

and if necessary adjusted, for stationarity—the joint distribution of the variables at a time step must be

independent of the time step, or, for Gaussian processes, the co‐variance of variables must be independent

of time. Patterns of autocorrelation and partial autocorrelation are then used to determine which

variables in�uence which others at which lags, and the values of parameters are estimated by standard

statistical procedures. It can happen that two series are not stationary, but some linear combination of them

is. If, of two such series, the two derivative series obtained by taking the di�erence of values between each

time step are both stationary, then the two original series are said to be co‐integrated. One analogy for co‐

integrated series is a man walking a dog on a leash. As the man pulls the dog and the dog pulls the man, each

of their trajectories is irregular, but the average of their positions follows a much smoother trajectory.

p. 512

A simpli�ed procedure is sometimes used to �nd Granger causes: each pair of variables is regressed in each

direction, controlling for other variables at a large number of lags; signi�cant regressions are taken to

indicate a causal relation. Many complexities arise in searching for multivariate causal time series:

dependencies may be non‐linear, distributions non‐normal, stationarity may not hold, a series of

unobserved common causes may exist, and, because many time series are in discrete steps,

‘contemporaneous’ causal processes may occur between the time steps. The last problem has been

essentially solved for contemporaneous causes by �rst regressing each variable on all previous time steps of

all variables, and then applying graphical search algorithms referenced above to the residuals (Demiralp

and Hoover 2003; Moneta and Spirtes 2006). The procedure allows unobserved contemporaneous common

causes. Time series problems remain very much open.

8. Causal Interpretation and Causal Puzzles

The statistical literature has developed various standard puzzles about probability and causality that

sometimes take on a didactic role.

1. Mistaken mechanisms. The overall rate of acceptance of female applicants to graduate programmes at

UC Berkeley was lower than the overall rate of acceptance of male applicants, prima facie evidence of
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discrimination against women. But not really: within each department, women were accepted at the

same rate as men, but women tended more often to apply to programmes for which admission was

more competitive.

2. Zero correlation. The correlation between per capita foreign aid that nations receive and the proportion

of a nation's population living on less than one dollar a day, is zero. It does not follow and is not true

that increasing foreign aid to any particular nation would not decrease poverty in that nation. What

does follow, or at least is suggested, is that a marginal increase in the amount of foreign aid, if

distributed among nations according to current mechanisms, would not decrease extreme poverty.

3. Correlation and aggregation. Suppose the RNA is extracted from each cluster of cells and the

concentrations measured, for many cell clusters. Suppose the concentrations of two molecular species

of RNA are strongly correlated, and remain correlated conditional on a third measured species

correlated with the �rst two. Each RNA species can be mapped to a ‘reading frame’—a gene fragment

from which that RNA molecule is produced by transcription. Does the correlation mean that

transcription of one of the genes in�uences transcription of the other, or that there is an unrecorded

common cause? It does not, because the measurements are e�ectively of sums of concentrations over

many cells. If the relations between transcription of one gene and transcripts of other genes is non‐

linear, as it is thought to be in some cases, then conditional independence relations among

concentrations at the cellular level can become conditional dependence relations among aggregated

concentrations.

4. The Monty Hall Problem. Monty Hall places a pile of money behind one of three doors. A contestant

arrives and chooses a door. If the door the contestant chooses actually hides the money, Monty opens

one of the other doors at random; otherwise Monty opens the door that the contestant did not choose

and that does not hide the money. Seeing the open, empty door, the contestant now has the option of

changing his selection or staying with his original choice. He wins the money if the door he �nally

chooses, whichever it is, hides the money. Should he switch doors or stand pat?

In repeated plays, contestants will win twice as often if they switch doors. The argument is simple:

there was a 2/3 chance the original choice was incorrect, and subsequently removing an alternative

does not change that fact. A similar result would obtain with 100 doors: one would win 99 times out of

a hundred by switching after 98 randomly chosen doors were opened. The connection with causality is

as follows: Monty's choice of where to put the money and the contestant's original choice of doors are

independent variables, each with three possible values. Each of these variables in�uences which door

Monty opens, another variable with three values. Independent variables that mutually in�uence a

third variable are (almost always, assuming faithfulness) dependent conditional on the value of the

variable they both a�ect, and that holds in this case. Given the information about which door Monty

opens, the contestant's original choice of doors provides information about where Monty put the

money.

5. Simpson's Paradox. Simpson (1951) produced an imaginary case in which the story suggests that

neither X nor Y in�uence Z, X and Y are independent, but X and Y are dependent conditional on Z. His

imaginary example produced a considerable statistical (and, eventually, philosophical) literature on

reversals of association by conditioning on other variables. From the point of view of graphical

models, Simpson's example is a contrived story with an unfaithful distribution, but the changes in

association, including reversals of sign, resulting from conditioning is a fundamental problem that

besets causal inference from regression.

6. Lindley and Novick's Puzzl e . Suppose we have the data for variable Y, with values y1 and y2, and

variable X with values x1 and x2, for two groups, one with value z1 for variable Z and the other with

value z2 for Z (Fig. 23. 1).

p. 513

p. 514
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Taking the sample as representative of a joint probability distribution, none of the variables are

independent of any others. There is, however, something odd about the conditional probabilities:

p(y1ߊx2, z1) > p(y1ߊx1, z1), and p(y1ߊx2, z2)> p(y1ߊx1, z2), but p(y1ߊx2) < p(y1ߊx1). If we condition on a

value of Z, then no matter which value of Z we condition on, also conditioning on x2 gives y1 a higher

probability than does also conditioning on x1. But if we do not condition on any value of Z,

conditioning on x1 gives y1 a higher probability than does conditioning on x2. No pair of the variables

is independent conditional on the third.

Lindley and Novick (1981) pose two di�erent ways these data could have been generated:

1. A medical experiment: X = treatment; x1 = treated; x2 = not treated; Y = outcome; y1 = recovered; y2 =

did not recover; Z = sex; z1 = male; z2 = female.

2. An agricultural experiment: X = variety of plant; x1 = white, x2 = black; Y = yield; y1 = high, y2 = low; Z

= height of plant; z1 = tall; z2 = short. They raise these questions: if you want to produce the best

medical e�ect, to whom if anyone should the treatment be given? If you want to produce the best

yield, what variety of plant should be planted? They answer: for the medical case, no treatment

should be given, that is, x2 is the ‘non‐treatment’ of choice, because it has better recovery

probabilities for males and better recovery probabilities for females. In the agricultural experiment,

white plants should be grown (i.e. x1) because, overall, it has a better probability of high yield.

p. 515

Fig. 23.1

Their explanation is that under the second interpretation, but not the �rst, the cases in the data are

‘exchangeable’. The idea of an exchangeable probability distribution is simply that for any �nite ordered

sample, the probability of obtaining that sample, given the sample size, is the same as the probability of

obtaining a sample of the same size with any permutation of the given ordering. The exchangeability

explanation is mysterious.

The two di�erent stories, one medical and the other agricultural, naturally lead to di�erent causal

interpretations of the data, and the di�erent causal interpretations suggest di�erent e�ects of

interventions (Meek and Glymour 1994; Pearl 2000). In the medical case the task is to estimate the relative

e�ects of treatment versus no treatment in the experiment, and then use that information to recommend

how the general population should be treated, or not treated. Assume that in the experiment someone's sex

is not caused by the medical treatment. Sex and treatment, Z and X, are not independent in the data—more

men received the treatment than did women. The dependency must then either be due to chance in selection
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of subjects, or due to the in�uence of sex on which patients were treated and which were untreated, or due

to the in�uence of something unknown on both sex and treatment. The causal structure of the experiment

in the two alternative later cases is one of those shown in Figs. 23.2 and 23.3.

The case of Fig. 23.3 is implausible if we think of sex as the biological condition of a person, but not if we

think of sex as the biological condition of a subject selected for the experiment. In either case we know from

the Markov Assumption how to compute the probability of recovery, y1, from an intervention—a forced

value of x1 or of x2—in a system with this description. We eliminate the association between treatment

choice and outcome due to the common cause (sex in Fig. 23.2; unknown in Fig. 23.3), and use the remaining

association as our estimate of the e�ect of treatment choices on recovery. We can do that by conditioning on

Z, on the sex of the subjects. We compute the probability of y1 conditional on x1, for example, and

conditional on Z. The probability of y1 conditional on x1, or respectively on x2, is of course di�erent for

di�erent values of Z, for males or females, but x2 is better in both cases.

p. 516

Fig. 23.2

Fig. 23.3

Fig. 23.4

Fig. 23.5

In the agricultural interpretation of the experiment, heights of plants are correlated with variety of plant.

That is most plausibly because the plant's variety in�uences its height, or something else—genetics, say—

in�uences both the variety and the height of the plant, but the height of the plant doesn't in�uence the

variety. (Both mechanisms are possible, of course.)
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In recommending a planting policy, we know the variety of seed to be planted, black or white, but we do not

know when we plant whether the plant will be short or tall. If in fact the plant variety in�uences height, as

in Fig. 23.4, then the variety in�uences the yield through two mechanisms, one direct, and the other

through height. In that case, to assess the in�uence of variety on yield, we should not condition on height. To

do so would be to discount one of the paths by which variety in�uences yield. So we �nd Lindley and

Novick's conclusion. Various complications arise if we think of genetics as a common cause of variety and

height, as in Fig. 23.5.

A variety of other di�culties in the causal analysis of epidemiological data are clearly explained from the

perspective of graphical causal models in M. M. Glymour (2006).
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